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The effect of a non-linear basic temperature profile on 
the forced flow of a viscous liquid non-uniformly 

heated from below 
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University College of Wales, Aberystwyth 

(Received 1 December 1964 and in revised form 1 April 1965) 

The forced motion of a liquid heated non-uniformly from below and subject to 
a non-constant basic temperature profile is examined. The problem is formulated 
as a two-point boundary-value problem which is solved by a numerical method. 
In agreement with previous work, the presence of a positive vertical lapse rate of 
basic temperature tends to decrease the forced motion. It is found that constant 
heat generation within the fluid produces a parabolic basic temperature profile, 
and this tends to increase the forced velocity components. 

1. Statement of the problem 
Many authors have discussed both experimentally and theoretically the motion 

of a viscous fluid which is differentially heated from below. From experimental 
work (see, for example, Fultz 1956) two distinct regimes have emerged. At 
low Rossby numbers a wave regime is established, and at high Rossby numbers 
the motion is symmetrical (with the liquid rising at the heat source and being 
simultaneously deflected by rotation); this is known as the Hadley regime. 

Davies (1953) and Kuo (1954) formulated theories for the symmetrical Hadley 
regime, restricting the results to the case of a shallow fluid with a basic tempera- 
ture profile independent of depth. These results were generalized to a fluid 
of greater depth by Lance & Deland (1957), who solved the equations on a dif- 
ferential analyser. Lance (1958) also used a numerical method to include in the 
problem a constant positive vertical lapse rate of basic temperature. 

The present investigation aims to generalize this model to include a variable 
vertical lapse rate, and to examine the influence of this on the symmetrical 
motion of the liquid when it is differentially heated at the base. This non-linear 
basic temperature profile arises from constant heating (or cooling) within the 
fluid. This may be due to radiative heat loss as incorporated by Ray & Scorer 
(1963), or to heating by a Joule electrolyte as envisaged by Sparrow, Goldstein & 
Jonsson ( 1 9 6 4 ~ ) .  These two investigations are concerned with the onset of 
convective instability, and they show that the presence of the non-linear basic 
temperature profile tends to destabilize the fluid. 
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2. The equations of motion 
A simple model is constructed in which an incompressible viscous fluid occu- 

pies a cylindrical dishpan, and the problem is formulated in cylindrical polar 
co-ordinates (r,  @, z ) .  The motion is assumed to be steady and axially symmetric, 
a constant heating term is included, and the Coriolis force is put equal to zero. 
If rotation is included in this problem the following method of analysis is still 
applicable; but, by comparison with Davies (1953), it  is expected that in general 
the magnitudes of the radial and vertical velocity components would be de- 
creased by increasing rotation. 

Under these assumptions the set of equations connecting the dependent vari- 
ables is 

(1)  

divv, = 0, (2) 

v, A curl v, = gk +pyl gradp1 +grad iv? + v curl curl vl, 

where 

In these equations v, is the velocity vector, the pressure is denoted by pl, 
the density byp,, the temperature by T,, v is the coefficient of kinematic viscosity, 
and K is the coefficient of thermometric conductivity of the fluid. k is a unit 
vector in the z-direction, thus the gravitational acceleration g acts in this direc- 
tion. Equation (3) is the equation of state for a liquid valid within small tem- 
perature ranges, where the reciprocal of the coefficient of cubical expansion a is 
taken as a constant; ps and T, are a constant density and temperature respectively. 
Equation (4) is the heat-transfer equation incorporating the constant heating 
term Q0, and c, is the specific heat at constant volume. 

Initially, when the fluid is not differentially heated, it is assumed that no 
motion occurs. Therefore, denoting basic state quantities by suffix zero and 
assuming they are functions of z only, the basic state equations become 

In equation (7)  the basic state density has been replaced by ps under the Bous- 
sinesq approximation. This equation can be integrated twice to give 

To = - (&oh2/2~p,~,)X2+ MX+N, ( 8 )  

where 2 is a non-dimensional height 2 = z/h, h being the depth of fluid, and M ,  
N are constants to be determined from the boundary conditions. To achieve this 
the temperatures of the two horizontal bounding surfaces of the fluid are assumed 

To = T,, a t  X = 0, 

To = q2) at X = l (z  = h) .  

to be given by 
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Denoting the temperature difference between the two boundaries as Oh, the basic 
temperature profile can be written as 

To == (QOh2/2~ps~,) ( Z - Z 2 )  + Oh5 + T(1p (10) 

When the liquid is differentially heated the symmetrical departure from this 
basic state is assumed to be small, and perturbation quantities u, v, w, p ,  p, r 
are introduced. Here the perturbation velocity vector v has been written in its 
component form u, v, w, where u is in the r-increasing direction, v in the q5- 
increasing direction and w in the z-increasing direction. p ,  p, r are the perturba- 
tion pressure, density and temperature respectively, thus the complete tempera- 
ture is given by To(z) + r(r, z ) .  These quantities must satisfy the linearized per- 
turbation equations of motion, which under the Boussinesq approximation 
become 

(11)  

V2v -v/r2 = 0, (12) 

(13) 

(14) 

wdToldz = K V ~ T .  (15) 

- aplar + vpS(V2u - uIr2) = 0, 

- aplaz + gar + V ~ , V ~ W  = 0, 

a(ru)/ar + a(rw)/az = 0, 

It should be noted that no perturbation heating term is included here. 

3. Reduction to a two-point boundary-value problem 
The variables r and x are separated following Davies (1953) by the substitutions 

(16) 1 u = U(z)J,(pr), v = 0,  w = W(z)Jo(/3r), 

' = T(z )Jo (pr )7  p = p(z)J0(pr)7  

where Jo, J1 are Bessel functions of orders 0 and 1 respectively. The set of partial 
differential equations now reduces to a system of ordinary differential equations 
in which the variables are functions of z only. Eliminating P, U and T ,  and using 
equation (10) yields the following equations for the vertical velocity component 

(17) 
W :  

where a = ph, D = d/d2. A and Q are non-dimensional parameters defined as 

A = h*gCd/~Vp,, Q = & o h 5 g a / 2 ~ 2 v p ~ ~ v ,  (18) 

(D2 - u ~ ) ~  W = a2(Q( 1 - 22) + A )  W ,  

A is the Rayleigh number and Q is a radiational parameter as defined by Ray & 
Scorer (1963). The dimensionless ratio 2Q/A = hQo/O~ps~ ,  is the ratio of the total 
flux of heat due to body heating to the flux due to conduction through the top and 
bottom boundaries under the same temperature difference but without body 
heating. A similar parameter is defined by Sparrow et al. ( 1 9 6 4 4  and by other 
authors in problems where heat transfer by radiative and conductive processes is 
considered. 

The six boundary conditions for the perturbed state must now be formulated; 
these are unaltered by the inclusion of internal heating and are identical with 
those formulated by Davies (1953). The fluid is assumed to be bounded above a t  

25-2 
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z = h by a free surface, and below at z = 0 by a rigid surface; four of the boundary 
conditions concern the velocities a t  these two surfaces, namely 

w = 0, a u p z  = 0 a t  z = h, (19) 

w = 0 ,  u=O a t  z = 0 .  (20) 

In addition to these conditions a side-wall condition must be satisfied, the 
radial velocity component must vanish on the circumference, that is 

u = 0 a t  r = ro, 

where ro is the radius of the dishpan. Here the boundary layer at the side wall has 
been neglected; u is strictly zero a t  the inside edge of this boundary layer. From 
(16) this condition defines an infinite set of p, the first of which is given by PI, 
where plro = 3-83. 

Following Davies (1953) the base of the fluid is assumed to be heated around the 
circumference and cooled a t  the centre; this heating is prescribed as 

ar/az = HJ,(Pr) at z = 0, (22) 

where H is a positive constant. This heating function implies that the net flow 
of heat by conduction at the base is zero. At the free surface it is postulated that 
there is a fixed heat flux due to conduction which is unchanged by the perturba- 
tion flow, thus 

a+k = 0 at z = h. 

The boundary conditions (19), (20), (22) and (23) can now be expressed entirely 
in terms of the dependent variable W .  This variable is then non-dimensionalized 
by putting W = ZF, where = gaHh3/psv has the dimensions of velocity. 
The problem has now been reduced to a two-point boundary-value problem, and 
can be written in terms of f;i7 as 

( 0 2 -  a2)3 W = a2{&( 1 - 22) + A }  V ,  (24) 

(25) 

can then be 

I subject to v = 0, DV = 0, D ( D ~  - = a2, a t  2 = 0, 

F = 0, DzW = 0, D ( D ~ - U ~ ) ~ W  = 0, at X = 1. 

The dimensionless radial velocity component 0, defined as U = 

calculated from the equation of continuity (14) as 

0 = - Dwla. (26) 

It is interesting to note that if parameters T, and p are introduced into equation 
(24) by the transformations 

( & + A )  = --Fa, %?/(&+A) = ( l - ~ ) ,  

the resulting equation becomes 

( 0 2 -  a73 W = - Tau2{l - (1 -p)  2 )  F. 

It has been pointed out by Dr M. H. Rogers in a private communication that 
this has the same form as the equation defining marginal stability for Couette 
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flow between two cylinders under the small-gap approximation (see, for example, 
Chandrasekhar 1961). However, the boundary conditions in the two problems 
are different. 

4. Numerical procedure 
Because a term in Z appears on the right-hand side of the differential equation 

an analytic solution has not been sought, but the problem has been solved by a 
numerical method. This is based on the fact that the differential equation (24) 
is linear, and can be split up into six first-order linear equations. 

Difficulty lies in the fact that the boundary conditions are known at each end 
of the range; thus, if the integration is started a t  Z = 1, the values of DW(l), 
D3 W( l), D4F( 1) must be assumed. Three different sets of guesses are taken for 
these derivatives, and, using the same negative increment in each case, the equa- 
tion is integrated by the Runge-Kutta procedure to the other end-point, Z = 0. 
Each set of guesses gives a different value of w, say wi (i = 1,2,3) where mi 
are linearly independent solutions. The true value of w must be a linear combina- 

W = Aiwi, 

where Ai are constants. These constants are taken such that W satisfies the 
three boundary conditions a t  3 = 0, namely 

W(O)  = O ,  DW(O)  = 0, D(D2-a2)2 V(O) = a2. 

Numerically this is achieved by solving the three linear equations for Ai by 
inverting the matrix of coefficients. The value of F is then computed at points in 
the range, and a can be calculated from a knowledge of the first derivative of v. 

A similar method has been used by Harris & Reid (1964) and Sparrow, Munro 
& Jonsson (19643) for solving linear eigenvalue problems. In  these cases the 
determinant of coefficients is required to be zero, and an iterative scheme is set 
UP. 

tion of wi, say 3 

i=l 

5. Calculation of the velocity profiles 
the bounday condition (21) gives ar,, = 3.83h. In  these calcula- 

tions a is taken to be unity, thus the depth of the fluid is small compared with the 
radius of the cylindrical vessel. The same numerical procedure holds for all values 
of a, and is not restricted to the case of a shallow fluid. Lance & Deland (1957) 
give results for the problem with no body heating for a = 1, 4, 8. These show 
broadly that as the fluid depth is increased the magnitudes of the vertical and 
radial velocity components decrease. 

Numerical values of the non-dimensional parameter A and Q defined in (18) 
are also required. Three separate cases are considered in the subsections to 

Taking /3 = 

follow. 
(i) Q = 0, A > 0 

First, the case is considered in which there is no internal heat generation, the basic 
temperature gradient then reduces to a constant. This is the problem considered 
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by Lance (1958) and solved by the method described 6y Goodman & Lance 
(1956). 

Lance considers a model in which a dishpan of radius 15 ern contains water, for 
which u = 0.01 cm2/sec and the Prandtl number Q = U / K  = 7 at 15 "C. As a = 1 
this implies that the depth of water is 3.916 em. Taking 19 = 1 OC/cm, Lance 
calculates A = h 2 d / u  = 10,737. However, A as defined by this relation is a 
dimensional parameter (deg. sec. em-1). This present investigation uses the non- 
dimensional definition of A given in (18) with the numerical values above and 
ps = 1;  this gives A = h4gu8/~ups = 4-13 x lo6. 
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FIGURE 1. Non-dimensional vertical velocity profile plotted against 
non-dimensional height for Q = 0; A 2 0. 

The differential equation (24) subject to the boundary conditions (25) was 
solved by the numerical procedure outlined in $4. A was taken to have values 
between 0 and 2 x lo4, and in each case an increment of - 0.1 in the integration 
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formula gave results accurate to three significant figures. For several values of 
A curves of and U are plotted against Z in figures 1 and 2 respectively. 

1 16 
Q = O  

- - - A  -= 10,737 

- 4  - 

- 8  - 

A = 100 

A 0  

- 12 - 

- 16 - 

FIGURE 2.  Non-dimensional radial velocity profile plotted against non- 
dimensional height for Q = 0; A 2 0. 

The values for an isothermal basic state, A = 0, agree with those of Lance & 
Deland (1957) in the case of zero Reynolds number. The case A = 10,737 agrees 
with Lance’s calculation when the Reynolds number is zero, and intermediate 
cases also show that as the positive lapse rate is increased the magnitude of the 
forced velocity components is reduced, that is the stability is increased. The three 
other main features noted by Lance (1958) are also apparent here as A increases. 

(ii) Q > 0,  A = 0 

This second case considers a fluid in which the two boundary surfaces are main- 
tained at the same basic temperature, but heat is generated internally within the 
fluid. The basic temperature is then given from (10) as 

To = ( Q o h 2 / 2 ~ p , ~ , )  (5 - Z2)  + T,,, 
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where T,d is the temperature at Z = 0 and Z = 1. The temperature attains a 
maximum value of T(ml at X = 0.5 where 

The temperature profile is therefore parabolic with the statical density in 
the upper half of the fluid increasing with height. Instability is therefore ex- 
pected to set in at  aparticular value of T(?,&) - T,,), this is the problem considered 
by Sparrow et al. (1964a), who find that for a fluid contained between two iso- 
thermal rigid boundaries instability first occurs (in our notation) when 
Q = 18662.6, tl. = 4.0. The main interest in this calculation for a = 1 lies in those 
ranges of Q and A for which the flow is stable with no forcing for all values of a. 

S 

6 

FIGURE 3. Non-dimensional vertical velocity profile plotted against 
non-dimensional height for 0 < Q < 1500; A = 0. 
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The differential equation (24 )  with a = 1, A = 0 and various values of& in the 
range of 0 < Q < 1500 was soived numerically subject to the boundary con- 
ditions (25). Some results for w and l7 are shown in figures 3 and 4 respectively 
where the curves Q = 0 are included for completeness. 

32 

24 

16 

s 

0 

2 
x o  
15 

- 8  

- 16 

- 24 

- 32 

A = O  

(2 

Q 

Q 

0 

500 

1000 

FIGURE 4. Non-dimensional radial velocity profile plotted against 
non-dimensional height for 0 < Q < 1500; A = 0. 

From these figures it is apparent that as Q is increased from zero in this range 
the magnitudes of the velocity components are increased. The position of the 
maximum vertical velocity component remains very nearly a t  Z = 0.57 for all 
the values of Q. The radial velocity component 0 has a zero a t  this point, and the 
maximum inflow in all cases occurs at the free surface of the fluid. 

As Q is increased further the velocity components continue to grow, and for 
Q of order 2 x lo3 the linearized approximation is probably no longer valid. 
Presumably in an exact theory the velocity amplitudes would become infinite 
a t  some value of Q = Q, corresponding to actual neutral stability for a = 1. 
As the linearized approximation is built into this theory it is difficult to draw any 
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definite conclusions about Q, other than an order of magnitude at which in- 
stability sets in. 

When both A and Q are positive constants the fluid has a higher basic tempera- 
ture at its upper surface than at its lower surface, and there is also internal heat 
generation within the fluid. 

From equation (10) the basic temperature profile is parabolic with a maximum 
value T(m) at 2 = 0.5 (1 +A/&) ,  where 

(iii) Q > 0,  A > 0 

T(m)- T(0 = 82KpsC,/2Qo + + Qoh2/gKPsC,. 
For A > Q the temperature therefore increases with height throughout the 

fluid, and, as noted by Sparrow et al. (1964a),  this corresponds to a completely 
stable state. When A < Q the temperature maximum lies within the fluid, and 
some of the fluid is at  higher temperature than the upper bounding surface. 
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FIGURE 5. Non-dimensional vertical velocity profile plotted against non- 
dimensional height for 0 < Q < 6100; A = 500. 
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was solved, subject to the boundary conditions, 
for A = 500 andvariousvalues of Q; some of the results for ware shown in figure 5, 
and figure 6 gives corresponding results for 0. In  the calculated results for Q 
in the range 0 < Q < 500, that is - 1 < A/& < co, the magnitudes of the velocity 
components increase only very slightly as Q increases, because the basic tempera- 
ture increases with height throughout the fluid, and for this reason are not shown. 

The differential equation for 
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FIGURE 6. Non-dimensional radial velocity profile plotted against non- 
dimensional height for 0 < Q < 6100; A = 500. 

As Q increases above 500 the velocity components grow more rapidly and the 
maximum value of - moves slightly towards the free surface of the fluid. 
The values given for Q = 6100 are so large that the linearized theory is possibly 
no longer valid. It appears that for a certain value of &,, of order 6x  lo3, the 
temperature difference T(m) - T,, becomes sufficiently large to cause instability. 

6. Conclusions 
In  agreement with Lance (1958) it is seen that the presence of a positive linear 

lapse rate of basic temperature decreases the forced velocity components. 
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However, the inclusion of a constant internal heating term into this problem 
tends to increase the velocity components. 

This internal heating gives rise to a parabolic basic temperature profile, and 
for values of A and Q such that A < Q there is some region of the fluid which 
is at  a higher temperature than the upper bounding surface. Such a situation is 
potentially unstable, and the results for a given A show that the forced velocity 
amplitudes grow as Q increases. The assumption that departures from the basic 
states are small, enabling the equations to be linearized, restricts the theory to the 
case in which the basic state is stable. However, these large velocity amplitudes 
give an indication that instability occurs for a certain value of Q = Q,, where 

This agrees with the results of Sparrow et al. (1964a) who show that the pre- 
sence of internal heat generation tends to destabilize the fluid. It is difficult 
to draw further quantitative analogies with this work as the boundary conditions 
used by Sparrow et al. for their homogeneous problem differ from those formulated 
in ( 2 5 ) .  It would therefore be valuable to consider the effect of different boundary 
conditions on the onset of instability, particularly the case of one rigid and one 
free bounding surface as relevant to this problem. 

At this stage the linearization approximation can be examined; for example, 
without this approximation equation (13) would read 

Q, > A .  

-p,(uaw/ar + wawlaz) - ap/az+gar + vpSV2w = 0. 

As the fluid is shallow the last term is approximately vp,a2w/az2 and, comparing 
this with the two non-linear terms in the equation, it is found that the linearization 
is justified if H is sufficiently small. This linearized theory can thus be expected 
to yield accurate results when the basic flow is stable, and when the temperature 
difference between the circumference and centre is sufficiently small. 

In  order to apply this theory to the Earth’s atmosphere, where Q simulates 
the radiative heat loss, rotation should be included in the model. This would 
have the effect of introducing a non-zero zonal velocity component, and it is 
expected that the amplitudes of the other velocity components would be de- 
creased. 

The author is greatly indebted to Prof. T. V. Davies for his valuable guidance 
and suggestions. The numerical work was carried out on the College’s I.B.M. 1620 ; 
advice was given by Mr D. W. Beard. This research was sponsored in part by 
Air Force Cambridge Research Laboratories, OAR, under Contract no. 

REFERENCES 

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic stability. Oxford University 
Press. 

DAVIES, T. V. 1953 The forced flow of a rotating viscous liquid which is heated from 
below. Phil.  Trans.  A, 246, 81-112. 

FULTZ, D. 1956 A survey of certain thermally and mechanically driven fluid systems of 
meteorological interest. Proc. 1st S y m p .  Geophys. Models (Baltimore 1953), pp. 27-63. 

GOODMAN, T. R. & LANCE, G. N. 1956 The numerical integration of two point boundary 
value problems. Math. Tabl.  Wash. 10, 82-6. 

AF 61(052)-690. 



Flow of a viscous liquid non-uniformly heated from below 397 

HARRIS, D. L. & REID, W. H. 1964 On the stability of viscous flow between rotating 
cylinders. Part 2. Numerical analysis. J .  Fluid Mech. 20, 95-101. 

Kuo, H. L. 1954 Symmetrical disturbances in a thin layer of fluid subject to a horizontal 
temperature gradient and rotation J .  Meteor. 11, 399-41 1. 

LANCE, G. N. 1958 The effect of a vertical lapse rate of temperature on the spiral flow 
of a fluid in a heated rotating cylinder. J .  Fluid Mech. 3, 523-30. 

LANCE, G. N. & DELAND, E. C. 1957 The steady, axially symmetric flow of a viscous 
fluid in a deep rotating cylinder heated from below. Univ. Calif. Publ. Engng, 159-76. 

RAY, D. & SCORER, R .  S. 1963 Studies of the problems of cellular convection in the 
atmosphere. Final report. Contract no. Cwb-10004. U.S. Weather Bureau. 

SPARROW, E. M., GOLDSTEIN, R. J. & JONSSON, V. K. 1964a Thermal instability in a 
horizontal fluid layer : effects of boundary conditions and non-linear temperature 
profile. J .  Fluid Mech. 18, 513-28. 

SPARROW, E. M., MUNRO, W. D. & JONSSON, V. K. 19646 Instability of the flow between 
rotating cylinders: the wide-gap problem. J .  Fluid Mech. 20, 35-46. 


